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Abstract. The effect of the “B” term in the interaction −χQ(1) · Q(2)[1 + Bτ (1) · τ (2)] was previously
considered in the 0p shell (small space). It is now studied in a larger space which additionally includes
∆N = 2 excitations. When B is made sufficiently negative we still obtain for 10Be, even in the larger space,
an unphysical collapse of some of the low-lying states so that their energies are less than the energy of the
conventional J = 0+ ground state. This effect, however, occurs for values of B considerably more negative
than was the case in the smaller space. It is shown that the inclusion of an additional two-body spin-orbit
interaction term prevents this unrealistic collapse in both the large and small spaces.

1 Introduction and background

In a previous work [1], for a shell model calculation of
10Be, a quadrupole-quadrupole interaction, of the form
−χQ · Q[1 + Bτ (1) · τ (2)], was used which has a com-
bination of the usual isospin-independent first term and
the less common isospin-dependent second term. In that
reference motivations were provided for the selection of
both the specific interaction and the specific nucleus that
were studied. The model space utilized was the 0p shell,
and in particular the dependence on the parameter B (the
strength of the isospin-dependent second term in the in-
teraction) was studied.

For B = 0 we have a spin-isospin independent inter-
action, and for the 0p shell the Wigner Supermultiplet
Theory applies [2]. We can also think of this B = 0 case
in 10Be as a very simple application of the Elliott model
[3] to the 0p shell. Of course, the greatest interest in the
latter model will be in the 1s–0d shell. The study of the
addition (to the common isospin-independent Q ·Q inter-
action) of the isospin dependent term −χBτ (1) ·τ (2) can
thus be regarded as an exploration of what happens when
we deviate from the simple SU(3) limit. In another vein,
a large negative value of B has been invoked in R.P.A.
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calculations to explain the splitting of the isovector and
isoscalar giant quadrupole resonances. Will this same large
negative B also give better results (for level energies and
electromagnetic transition rates) in shell model calcula-
tions than the B = 0, SU(3) limit?

In the previous calculation of 10Be in the 0p shell [1],
the answer was a resounding no! In the 0p space calcu-
lation with B = 0, the ground state has J = 0+ and
orbital symmetry [42]. There is a two-fold degeneracy for
the first excited state: two J = 2+ states both with orbital
symmetry [42], corresponding to K = 0 and K = 2. The
focus of interest in [1] was also on two higher-lying degen-
erate L = 1 S = 1 states: one with orbital symmetry [33],
and the other [411]; in each of these two cases from the
L = 1 S = 1 configuration one obtains a triplet of states
J = 0, 1, 2.

When a negative B of increasing magnitude was intro-
duced (see Fig. 1 of this paper), the 2+

1 state came down
in energy in a nearly linear fashion as a function of B. The
B(E2) to this state was purely isovector, i.e. was propor-
tional to (ep − en)2. Ultimately, at B ≈ −0.68 this 2+

1

state crossed below the 0+
1 state and became the ground

state.
However, coming down even faster as B was becoming

more negative was a triplet of states with J = 0+, 1+

and 2+ which for B = 0 was part of the degenerate [33]
and [411] L = 1 S = 1 states mentioned above. Very
quickly, after the 2+

1 state became the ground state, as the
magnitude of the negative B was further increased beyond
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Fig. 1. The excitation energies of selected states in 10Be, with
respect to the 0+

1 state, as a function of the isospin-dependent
quadrupole-quadrupole interaction parameter B. The energy
of the conventional 0+

1 state is always taken to be 0 MeV and
the energies of the other states are adjusted accordingly. Small
Space with x = 0.0

B ≈ −0.68 this triplet (which is some linear combination
of states of symmetry [33] and [411]) became the ground
state for B ≤ −0.74.

The “collapse” described in the last two paragraphs
is physically unrealistic since all known even-even nuclei
have the 0+

1 level as their unique ground state.
The scope of this paper is outlined in Sect. 2. The

results of previous work are summarized in Sect. 3. Sec-
tions 4 and 5 consider the effects of the isospin-dependent
term and the spin-orbit term in the small space. The ef-
fects of enlarging the shell-model space are discussed in
Sect. 6.

2 Outline of the calculations for 10Be carried
out in the present paper

In this paper, in the hope of preventing the aforemen-
tioned undesirable collapse, we extend the calculations of
[1] in two ways. First, we increase the model space to in-
clude not only all the possible configurations in the 0p
shell, but also all 2~ω (i.e. ∆N = 2) excitations. We
thus have a “small” space (0p shell) and a “large” space

(0p+ 2~ω). Second, we study the effects of also including
two body spin-orbit interactions. Our interaction is now
−χQ ·Q [1 +Bτ (1) · τ (2)]+xVs.o. where x is a multiplica-
tive constant and Vs.o. is a two body spin-orbit interaction
which was initially used and described by Zheng and Zam-
ick [4]. Basically, for x = 1, the last term in the interaction
gives a good fit to the free-space two-body spin-orbit part
of a non-relativistic G matrix derived from a realistic in-
teraction [Bonn A interaction]. The two-body spin-orbit
interaction (xVs.o.) behaves to a very large extent like an
one-body spin-orbit interaction which depends on the nu-
cleon member. For x = 1 the results quoted in Table 1
of [4] for the p1/2–p3/2 splitting are 3.38 MeV for a 4He
and 5.06 MeV for an 16O core. There are, however, some
arguments that inside a nucleus the spin-orbit interaction
becomes stronger due to medium modifications in a rel-
ativistic formulation. Hence we shall also present results
for x = 1.5.

The results of our calculations for the energies of the
levels of 10Be are presented in Figs. 1 – 6, which corre-
spond respectively to the following calculations:

Fig.1: Small space x = 0.0 (no spin-orbit interaction)
Fig.2: Small space x = 1.0 (free space spin-orbit in-

teraction)
Fig.3: Small space x = 1.5 (medium modified spin-

orbit interaction)
Fig.4: Large space x = 0.0 (no spin-orbit interaction)
Fig.5: Large space x = 1.0 (free space spin-orbit in-

teraction)
Fig.6: Large space x = 1.5 (medium modified spin-

orbit interaction)

In all these six figures the energy of the conventional 0+
1

state is always taken to be zero and the energies of all
other states are given with respect to that state.

3 Small space results for 10Be without the
spin-orbit interaction term

In Fig. 1 we show a calculation of the energies of states in
10Be as a function of the (negative) B in the small space
(the 0p shell) and without any spin-orbit interaction. For
B = 0 we have the supermultiplet or SU(3) limit in which
the 2+

1 and 2+
2 states are degenerate at a calculated energy

of 4.7 MeV. They correspond to [42] K = 0 and [4] K = 2
states. There are two degenerate L = 1 S = 1 states with
quantum numbers [411] and [33] which are calculated to be
at 7.8 MeV. For each of these L = 1 S = 1 configurations,
we get a triplet of states with J = 0+, 1+, and 2+.

We see from Fig. 1 that as the magnitude of the neg-
ative B is increased from B = 0 one of the [42] 2+ states
comes down rapidly in energy and becomes the ground
state at B ≈ −0.68. Having a 2+ ground state is of course
very unphysical. And that is not the only problem in Fig.
1. As B becomes more negative, dropping down there even
faster than the 2+

1 is one of the L = 1 S = 1 triplets (which
had a higher energy than the 2+

1 at B = 0). This degen-
erate triplet of J = 0+, 1+, 2+ states becomes the ground
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state for B ≤ −0.74. Basically, the results in Fig. 1 re-
produce (in a redrawn form) those of the previous work
by Fayache, Sharma and Zamick [1]. The unrealistic na-
ture of these results clearly requires that modifications be
made to our approach to the problem, modifications such
as those which our present paper will provide.

4 The B dependence of the level energies for
two identical particles in the 1p shell – 6He
or 6Be

We can gain some insight into why for large negative val-
ues of B we get other states coming down in energy with
respect to the normal L = 0 S = 0 J = 0 ground state.
This we do by considering the simplest problem of two
identical particles in the p shell, i.e. 6He or 6Be. This
analysis also applies to two holes (i.e. to 14C or 14O).

With a spin-isospin independent interaction, the wave-
functions can be classified by LS coupling:

Ground State (L = 0 S = 0)J=0+

First Excited State (L = 2 S = 0)J=2+

Triplet (L = 1 S = 1)J=0+,1+,2+

The above states all have isospin T = 1.
With an isospin-independent Q ·Q interaction (i.e. for

our interaction with B = 0), the energies are given by [3]

〈−χQ ·Q〉λµL = χ̄[−4(λ2 + µ2 + λµ

+ 3(λ+ µ)) + 3L(L+ 1)]

where χ̄ = χ 5b4

32π with b the harmonic oscillator length
parameter (b2 = ~

mω ).
For the even L states (λµ) is equal to (20); for L =

1 (λµ)=(01). With the Q · Q interaction with B 6= 0,
−χQ ·Q[1+Bτ (1) ·τ (2)], we replace χ̄ by χ̄(1+B) (since
τ (1) · τ (2) = +1 for T = 1). The energies are then

L = 0 S = 0: −40χ̄(1 +B)
L = 2 S = 0: −22χ̄(1 +B)
L = 1 S = 1: −10χ̄(1 +B)

For B ≥ −1, the L = 0 state is the lowest in energy,
and the L = 1 S = 1 triplet is the highest in energy. For
B = −1, all three states are degenerate at zero energy.
For B < −1, there is a sign change of the overall coupling
and the L = 1 S = 1 triplet becomes the ground state and
the L = 0 S = 0 state is at the highest energy.

5 The inclusion of a two-body spin-orbit
interaction term in the small space

In Fig. 2 we stay in the small (0p shell) space but add
to the interaction an additional two-body spin-orbit term
with x = 1 as discussed in Sect. 2. The 2+

1 and 2+
2 states

are no longer degenerate at B = 0. This corresponds to
the experimental results. The observed data has the 2+

1

at 3.368 MeV and the 2+
2 at 5.960 MeV. The B(E2) from

Fig. 2. Small Space with x = 1.0

the J = 0+
1 ground state to the 2+

1 is very strong with
B(E2) = 52 e2fm4.

As we increase the magnitude of (negative) B in Fig. 2,
we no longer get the cross-over shown in Fig. 1, where for
large negative values of B other states had lower energies
than the conventional 0+

1 state. The addition of the spin-
orbit term has thus greatly stabilized the results. There is,
however, one obvious disagreement with experiment; for
B ≤ −0.55 the lowest 1+ state comes down to below the
2+

2 state. This is not seen experimentally; indeed no low-
lying 1+ state has yet been observed in 10Be and no J =
1+ states are mentioned in the compilation of Ajzenberg-
Selove [5].

Figure 3 was obtained by using a stronger (medium
modified) spin-orbit interaction with x = 1.5 in the small
space. Figure 3 is qualitatively similar to Fig. 2 (small
space with x = 1) but in Fig. 3 the J = 1+ state lies
below the 2+

2 state only for B ≤ −0.8.
The results of this section suggest that it will be inter-

esting to see what happens if we repeat our calculations
for the spin-orbit strengths x = 0, 1.0 and 1.5 in a larger
shell model space. This is done in Sect. 6.2.

6 Large space results for 10Be

In this section, we extend our previous 0p space (small
space) calculations of 10Be, as described in Sects. 3 and 5,
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Fig. 3. Small Space with x = 1.5

to include all ∆N = 2 (i.e., 2~ω) excitations. The results
are provided in Fig. 4 (with spin-orbit strength x = 0),
Fig. 5 (with x = 1), and Fig. 6 (with x = 1.5). Although
there are some differences between corresponding results
(for the same value of x) between the small and large
spaces, we can quickly assert that in the most important
respects the results in the large space are remarkably sim-
ilar to the corresponding small space results, albeit on a
larger (i.e. expanded) scale of B.

6.1 Large space results with no spin-orbit interaction

We first consider in Fig. 4 the 10Be case in the large space
where there is no spin-orbit interaction term (x = 0).

We can compare in Figs. 1 and 4 (both for x = 0)
the situations for B = 0 (i.e. a simple isospin independent
Q ·Q interaction). It is interesting then to note that when
we extend the calculation with x = 0 to ∆N = 2, some
degeneracies are preserved and some are not. The super-
multiplet degeneracies are preserved, i.e. for a given [f] the
various (S, T ) spin-isospin combinations are still degener-
ate. However, the ‘accidental’ degeneracies in the 0p space
are not maintained in the larger space.

For example, the 2+
1 and 2+

2 states, which were degen-
erate in the 0p space, are no longer so in the extended
space. The 2+

1 state is calculated to be at 2.186 MeV, and

Fig. 4. Large Space with x = 0.0

the 2+
2 state at 3.400 MeV. Most of the calculated E2

strength goes to the 2+
2 state.

The two sets of triplets (L = 1 S = 1 J = 0+, 1+, 2+)
with orbital symmetry [33] and [411] are degenerate in
the 0p space. This is because the (λµ) values are (03) and
(30) respectively and the SU(3) formula for the energy is
symmetric in λ and µ. In the extended space, for B = 0,
the states split in such a way that the excitation energy
of one is about twice that of the other. The reason for the
removal of this degeneracy may be that including ∆N = 2
mixing is equivalent to having different oscillator frequen-
cies in the x, y and z directions, as in the Nilsson model.

We next consider when x = 0 what happens to the
excitation energies of the states in 10Be as a function of
an increasingly negative B in the large space (i.e. when
we include not only all configurations in the 0p shell but
also all 2~ω excitations as well). The results are shown
in Fig. 4. In the lower part of that figure we follow the
behaviour of the 2+

1 state (dashed curve) and the L =
1 S = 1 degenerate triplet J = 0+, 1+ and 2+ (triple
dotted-dashed curve). We find that, although the overall
scale for B has changed in going from the small space
(Fig. 1) to the large space (Fig. 4), the two sets of results
(both with x = 0, i.e. without the spin-orbit term) are
qualitatively quite similar. That is to say, that the 2+

1 state
and the degenerate L = 1 S = 1 J = 0+, 1+, 2+ triplet
still both come down in energy in Fig. 4 as B becomes
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Fig. 5. Large Space with x = 1.0

more negative. Here in the large space, however, the L =
1 S = 1 triplet, which has a larger slope, beats out the 2+

1
state, is the first to cross the 0+ state at B ≈ −1.6, and
becomes the ground state for B ≤ −1.6.

A very important point is that we notice a change of
scale for the value of B at the crossover of the 0+

1 state
by somewhat more than a factor of two (−0.68 vs −1.60)
in going from the small space to the large one. There has
been considerable discussion of this in the literature, e.g.
by Bes, Broglia and Nilsson [6], of how to relate values
of B in large and in small model space. These authors
point out that the “renormalized” B in a small space is
considerably smaller than the “bare” B in the large space.
For example, they suggest that corresponding to a bare
value of B = −3.6 in the large space, the renormalized
value to be used in a small space is only B ≈ −0.6.

Another change in going from the small space to the
large space concerns the isoscalar and isovector B(E2)’s.
In the small space the 2+

1 , which came down in energy as B
was made increasingly negative, was a purely “isovector”
state [1]. That is to say the value of B(E2, ep, en) from the
ground state to that 2+

1 state was zero if ep = en but was
large if ep = −en. In the large space, the corresponding 2+

1

state is not purely isovector. At B = 0, the 2+
1 state is at

2.186 MeV and the 2+
2 state at 3.400 MeV. The calculated

isoscalar B(E2)’s (ep = en = 1) are respectively 63.76 and

Fig. 6. Large Space with x = 1.5

113.34 e2fm4; the isovector B(E2)’s (ep = 1, en = −1) are
respectively 12.49 and 9.52 e2fm4.

When B = −1.5 (just before the collapse), the lowest
2+ state is at 0.370 MeV and is part of the L = 1 S = 1
triplet that is coming down towards the 0+

1 state. That
lowest 2+ state has zero isoscalar and zero isovector
strength. The two lowest 2+ states whenB = 0 are now (at
B = −1.5) the second and third 2+ states and are respec-
tively at 0.717 and 4.199 MeV. The isoscalar B(E2)’s are
32.86 and 168.4 e2fm4, respectively; the isovector B(E2)’s
are 13.28 and 0.193 e2fm4.

6.2 Large space results when the spin-orbit interaction
term is added

When the spin-orbit interaction is added to our original
interaction the results are stabilized just as they were in
the small space. This can be seen in Fig. 5 (for x = 1)
and in Fig. 6 (for x = 1.5). Whereas for x = 0 in the large
space there is a collapse of the 2+

1 state as well as of the
triplet L = 1 S = 1 state near B = −1.5, this collapse
disappears in the large space when the spin-orbit interac-
tion is turned on. The only obvious unphysical behavior
is the coming down of the J = 1+ state below the 2+

2
state. This occures for B ≤ −1.0 for x = 1 (Fig. 5) and
for B ≤ −1.2 for x = 1.5 (Fig. 6). Again these values are
larger in magnitude than the corresponding values in the
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small space (B ≤ −0.55 in Fig. 2 and B ≤ −0.8 in Fig.
3 respectively), but we would have expected still larger
values in the large space following the prescription of [6].
Studying the behavior of the calculated 1+

1 state in 10Be
is a good way to get a handle on the relative strengths
of the opposing effects of making B increasingly negative
and of increasing the strength x of the spin-orbit term.
The latter increases the 1+

1 energy, the former decreases
it. Thus, for a known fixed value of the spin-orbit strength,
we could in principle obtain an estimate for the value of B
if we knew the excitation energy of the 1+

1 state. This state
could be experimentally identified because of the strong
B(M1) ↑ for the 0+

1 → 1+
1 transition strength; in our large

space calculations we predict it to be 3.53 µ2
N for x = 1.5,

B = 0 and 3.86 µ2
N for x = 1.5, B = −1.5.

7 Closing remarks

In this paper we were able to eliminate the physically unre-
alistic results that were obtained in [1]. There, in the small
0p space, with the interaction −χQ(1) · Q(2)[1 + Bτ (1) ·
τ (2)], unphysical results were obtained for the excitation
energies of the states of 10Be. For the large negative values
of B that are needed to give the correct splittings of the
isovector and isoscalar giant quadrupole resonances, the
0+

1 is no longer the ground state.
The first remedy that we investigated in this paper

was to expand the 0p shell model space by adding to it all
possible 2~ω excitations. We found that this approach did
not remove the problem. The magnitude of the value of the
negative B at which the crossover of the 0+

1 occured in the
large space was considerably larger than the corresponding
magnitude in the small space, though smaller than would
have been expected from the prescription of [6].

The second remedy that we tried in this paper in-
volved adding to our original interaction a realistic two-
body spin-orbit term. When this was done the collapse was
eliminated in both the small (0p) and the large (0p+2~ω)
spaces.

Some additional remarks and caveats are in order. It
was noted by Fayache, Sharma and Zamick [7] that the
isovector scissors mode in 10Be is at quite a high energy,
E ≈ 22 MeV. One cannot obtain such a high energy for
this state with an isospin-independent Q · Q interaction
whose strength is chosen so that the 2+

1 energy comes out
correctly. Adding a negativeB term to theQ·Q interaction
helps to raise the energy of the scissors mode state. On

the other hand, when one examines realistic interactions,
by focusing on their long range parts, one does see the
emergence of a Q · Q interaction but the large B term
is not present. The microscopic origin of such a term is
not understood. Recently, there has been an analysis by
Nojarov, Faessler and Dingfelder [8] and by Nojarov [9]
of the isovector part of the optical potential and they feel
that it should be weaker than in previous analyses.

In conclusion, we have shown that by adding a realistic
two-body spin-orbit interaction one can remove the low-
energy instabilities that arise when one adds an isospin-
dependent term to the quadrupole-quadrupole interaction
(a term which helps to get the correct isospin splitting of
giant quadrupole resonances and to raise the energies of
scissors mode states). In other words, it makes no sense
to use the interaction −χQ ·Q[1+Bτ (1) ·τ (2)] with large
negative B, unless one also adds spin-orbit terms.
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